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SUMMARY

An approximate methoi Is presented for calcM@ ing the pressure
distribution on conical bcdies of noncircular cross section in a super-
sonic flow field. By a superposition of elementary conical flows due
to line sources, the flow about an ~’bitrary cone my be described.
Illustrations of the pressure distribution about several shapes are
included to demonstrate the methcd. The problem of such a body at
angle of attack may slso be solved by the esme method, as well as the
problem of yawed flight at angle of attack.

INmciDucTIoN

Linearized methods have been applied to determine solutions of
the supersonic flow field about both solid and open-nosed bodies of
revolution. (See references 1 to 4.) The methods of-reference 1 have
been extended herein to ~cduce a linearized solution for cones of srbi-
tisry cross section, suchas might serve as forebodies of nonsymmetiical
fuselages. The solution is based on the use of a combination of line
sources inclined arbitrarily to the flow direction. ~ the proper.sources
are chosen, any conical body shape can be described and the resulting
surface pressures canbe calculated.

The method presented herein was devised during the fall of 1947
at the NACA Cleveland laboratory.

SYMBOLS

The following s~bols are

c pressure coefficient
P

c,d semi-axes of ellipse

used in this analysis:
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source strength

slope of line source with respect to flow direction

component, normal to flow direction, of distance from
on line source to arbitrary point in flow field

free-stream velocity

ccmponent of total velocity normal to body at svrface

radial (cylindrical coordinate) perturbation-velocity

axisl perturbation-velocity component

point

component

.

.

.—

tangential (cylindrical coordinate) perturbation-velocity component

Cylindrical coordinates

cotangent of Wch angle, ‘lJG-

~ position of line source, measured from 6 = Tr/2 pland

angle between radial velocity and normal to body, measured in
x= constant plane

angle whose tangent is ratio of radial to =ial coordinates
of point on body surface, tan-l r/x

axial coordinate of line source

source strength per unit of axial length

perturbation-velocitypotential

angle between normal to body surface ad normal to ray,
which intersects axis of body

GENERAL ANALYSIS

In the solution of the pressure distribution over a body, a method
of successive approximation is used. A perturbation-velocfty potential
based on linearized flow is found from which the three velocity components “
may be determined. E these velocities satisfy the boundary conditions
for the desired body, the potential describes tie flow about the actual
body. The pressure coefficient my then be found from

.
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cP=- 2uxjr.J

3

(1)

The perturbation-velocity potential mqy not be assumed com-
pletely arbitrarily, but is subject to several general limitations
and to some particular ones imposed by the body. The particular
limitations form a guide in the selection of the potential. The
two general limitations are: (1) the potential must satisfy the
Prsndtl-Glauert equation; snd (2) under the conditions of Mnear-
ized flow, the disturbance velocities should disappear at the Mach
cone.

The ZYandtl=lauert equation for compressible frictionless
potential flow, in linearized fomn and cylindrical coordinates is

(2)

A line source W of strength pm unit length f(&), lying
in the plane 6 = [(fi/2) + 5], whose slope with respect to the
flow direction Is m, is shown in figure 1. me potential at s~e
point P due to such a disturbance is

/’
x-R@

m 1=— f(g)d~
T

where R is, from

R2

This botentisl can

4fi

Jo
A/(~ - X)2 - ~2R2

(3)

the geometry of figure 1, defined by

. r2 + (m~)2 - tib sin (8 - 5) (4)

readily be shown by direct substitution to
satisiy equation (2). - ,

Cmubining equations (3) and (4) and rearranging the terns
result in



!Che limits of integration are the origin ~ = 0, because there is no diwhn%ance
ahead of it and no disturbanc6g are pro-ted upstream; end ~ = x - Rj3, because no part

Of the line source beyond that point includes the point (xjr, f3) within its Mach cone.

~uatlm (5) is of the SSJDEIform as equation (3), and can be readily integrated H

f(~) Is assumed proportional to ~ : that is, f(~) = ( - 47fAw2~ . 3Megn3tion under

this coalition dver3

The perturbation-veloci~

ferentiatlng equation (6)

ccmlponents U , Ux, and
r...

r -1--1

x- mr!32sin (f3- b)

I& -
Im@ sin (e - 5)]2 - (F - r2~2)(l-m2p2

“’- 1)
1

(6)

yg> respectively, ‘can be found by dti-

wltn respect to r, x, and e:

I

.
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If m = O, that is, If the line souroe is in the flow direction, these equations reduce

to those developed by wn E&s& ad Moore fw the flow about a right circular cone (see

reference 1].

~

~2p’

4=4 -~ (7a)

U= = -K cosh”l $ (&)

The boundary condition for a pticular flow requires that the vekci~ normal to the E
body at the surface be zero. ~ figure 2(a), O!F is normal. to the x-axis end intersects it;

~O’G ie nmmal toa ray 00? of the body and intersects the x-axis; OIH Is n- to the

boay surface; O~L iEIn- to the contour @ the body section f- by CRtiiIW the b~ ~

Itith a plane pwpenkkulam to the x-sxis and lies in that plane; ad O’D is normml to plane ●
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?&em figure 2(a),

7

1

[
Un=o= Urcosv

J
-(U+ Ux)sinv cos V- Uesin W

●

or

E&!4LUr - Ue ~os~ .(u+ux)ta,n~ (lo)

But, also from figure 2(a),

tan$=tanxcosv (D)

and, with reference to figure 2(b),

-tallA=

where r = f(e) is the equatim of

dr
im (12)

the body cross section. JY equa-
tions (lo) to

is obtained:
(12) are c~bined, the boundary condition for the flow

%
lgu =(U+UX):

-Fde e

The second general condition for linearized conical flow, stated
previously, is that the perturbation velocities ap~oach zero as the
Mach cone is approached, or as rP/x approaches unity. ‘I%iscon-
dition is exactly tie for equations (7) to (9).

The potential found from the single-line source that has been
considered until now is insufficient to calculate the flaw about an
arbitrsry baiy. Because the potential due to one source satisfies
the general limitations of the problem, however, a series of poten-
tials due to a number of sources of various stiengths and ~ositions
can be so added together that the resulting flow satisfies the bound-
ary conditions for the particular body in question and thus can be
assumed to be the desire? flow.

Four psmmeters are considered in selecting the source pattern:
the angular position 5, the slope of each source relative to the
flow direction m, the number of sources, and the stiength of each.

APPLICATION (l!’METEC8)

Because the perturbation velocities are functions of only r/x
and 6, the resulting bcdy contours are conical and only one body
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section that is in a plane normal to the free-streem-flow direction
need be considered. The problem is thereby reduced to two dimensions ●

and
%0

the
the

the ‘bbdyis completely described by one plane, as in figure 3.
line sources thus appear in such a“figure simply as points.

With the use of several sources of varying strength and position,
boundary condition, defined by eq~tion (13), can be made to yield
flow about the desired lmdy shape. Although such a solution is

found L%rgely hy trial and error, some general rules for the selection
of sources yielding a specified body shape canbe established. The
four -parameterspreviously mentioned, that is> the angular posi-,
tion 5, the slope of the line sources m, the number of sources, and
the so&ce streng~h, must be

1. The axes of symmetry
inasmuch as the sources must
the same axes.

kept in mind.-

of the body section should be noted,
be symmetrically arranged relative to

2. The source nearest to a peak in the section should be nearer
to that point them to any other point on the section because the per-
turbation velocities due to the body are a maximum at the peak and,
inasmuch as velocities due to the source increase as the distance
from the source decreases, the point closest to the source has the
highest velocity. The distance froma point on the body to the
nearest source must therefcme be equal to or less than the radius
of curvature of the body sectim at that point.

5. E the body is elongated, a series of sources in a line are
required. The slendererthe section, the more sources are needed
to prevent contour irregularities in the bdy described by the
resulting solution (equation (13)). AISO, for a given llodyOf tiiS

type, as the section narrows the sources should be closer together.

4. fi general, the larger the number of sources used, the more
closely the linearized flow-obtained fits the body in question and
the fewer-are the number of trial solutions required to olxtaina
satisfactory answer. Each such solution, however, is more latmrious
them one using fewer sources.

To SWtl!MJ?ize, the angular position of the sources is determined
by rules 1 and 2, the distice from the sxis by 1, 2j and 3, and the
number of sources by 1 and 3. Rule 4 serves as an.over-all gui~e.
Only K, which is proportional to the source strengths, remains to
he determined. Rrti the symmetry condition, sources that are in the
~ Position re~tive to tie aes of symmetry-have the same strength.

●

-—

.



With a known number of different source strengths, equation (13) may
be solved for the strengths at the same numiberof points on the surface
by using equations (7) to (9). The potential is now completely defined.
This Totentia.1should thenbe checked in equation (13] at several points
on the body to determine whether the flow due to the”source potential
is the same as that over the actual body. It should be noted that
the strength of a source may be negative.

The case of flow at angle of attack csnbe solved by considering,
at zero angle, a body whose cross section consists of sections of the
actual bcdy taken normal to the free stieem instead of normal to the
axis. The x-axis of the new body is then parallel to the flow d&ec-
tton. For a small angle of attack, the two cross sections probably
differ little, but their positions relative to the coordinate axes
differ. The
in a similar

Several

case of yawed flight at angle of attack can be solved
manner (fig. 4).

Examples

examples folJmw to illustrate the general rules that
have been outlined:

Example I. - Assune that an elliptic section (fig. 3) is desfred.
From the symmetry condition, two sources are assumed as a first approx-
imation to such a section. ‘These sources are of equal strength, =~ui-
distent from the x-axis, and at 5 = O and 5 =
are found from equations (7) to (9).

fi. The velocities

The equation of an ellipse is

r’ =
dzcz

dz sin2 ~ + C2 COS2 e

where c and d ere mador and minor semi-axes,

From this relation,
ldr
~ ~ may be obtained:

sin 6 cos e“(c’-d’)

d’ Si112 e i- C2 COS2 e

respectively.

(14)

When a Mach number and values for c end d, are given, a position
for the sources (that is, a value of m) is selected. I&cm the
second general rule, c - m of figure 3 should be smewhat less than
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the radius of curvature at c, fi/2. With this guide, a value of m
can te assumed. From the coordinates of one point on the surface K/U
can be found bysubstitutionof equations (7) to (9) and (14) in equa-
tion (13). Several other points should then be checked in the boundmy
relation. ~ agreement is poor, the sources should be moved and per-
haps others added. When a potential is obtained that satisfies equa-
tion (13) closely enough, the pressure coefficient can then be found
fran equation (l).

.

An example of the results of such a calculation is shown in
figure 3. The bcdy shape obtained by using the value of K previ-
ously detemined and by solving equation (13) for r/x as a function
of 6 is shown together with the desired shaye. In thfs emple, w~ere

the contour is almost circular, the pressure distribution approximately
folilmws the body shape. The deviation of the calculated section from
the desired ellipse could be considerably decreased by placing the two
sources farther apart and adding a third source at the origin.

If the flow about an elllpse having a larger ratio of major to
minor axes than was used in figurs 3 is desired, the perturbation-velocity
potential for two sources gives poor results. The effect of varying K
while holding m constant is shown in figure 5. A similar result is
obtained by holding the length of one of the axes co-tint and varying
the length of the other by changing m, while holding the source strength
constant. In order to ob~in a satisfactory solution for an ellipse having .
the ratio of the axes much greater than that in figure 3, a series of sources
can be used.

●

Ecemple II. - Assume that an ellipse havi~ the ratio of maJor to
minor axes equal to 5 is desired. (See fig. 6.) Obviously, for symmetry,
a number of source pairs, as used in the previous eqle, plus perhaps
a single souxce at the origin~will give the desired solution. The position
of source 1 in figure 6 may be assumed frcxnthe condition that its distance
from the peak must be approximately the radius of curvature at the peak.
The distance between sources 1 and 2 is taken as about equal to the distance
from source 2 to the nearest point on the body. The remaining sources My
be similarly chosen. This procedure gives a system of three source pairs
whose velocities are found from equations (7) to (9), and a single source
whose velocities ~e found from equations (7a) and (Sa), which are simply
the velocities found when m is zero. When equation (13) is solved for
this system of sources at four points on the bdy, Kl,

%
, K3, and K4

(fig. 6] are determined and the pressure coefficient can e found fixxn
equation (l).

The desired ellipse and the contour calculated by the use of seven
sources are shown in figure 6 together with the pressure distribution
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corresponding to
deviates greatly
follows the body

U

the source configuration. E this example the section
from a circle and the pressure Distribution no longer
contour. The maximum and minimum values of the pres-

sure coefficient, however, still.occur at the maximum and minimum points,
respectively, on the section.

Eum@e III. - Now assume that the pressme distribution is desired
over a body whose cross section is a trisngle modified by rounding the
vertices (fig. 7). From symetry considerations, three sources of equal
strength should be assumed at 5 = 0, 2fi/3, and 4x/3. ‘lhesesources
should be placed at approximately the center of curvature of the vertices.
Becauee the body is approximately circular, a soimce that is not of the
same strength as the others should be placed at the origin.

The velocity components can thenbe calculated from equations (7)
to (9) and the strength of the sources cam be established %y solvin&
equation (13) at two points.

Such a surface, with the corresponding pressure distribution, is
illustrated in figure 7. As in the first example, the pressure distri-
bution fo310ws the trends of the body shape.

It must be remembered that the examples given are meant to illustrate
the methcd of’solution of such bodies rather than to show actual pressure
distributicms, although the trends indicated should be correct. The bcdies
chosen are probably not slender enough for great accuracy in a linearized
solution.

suMMlmY cm ANAIIYSIS

&n approximate method has been presented for calculating the
pressure distribution on conical bodies of arbitrary cross section in
supersonic flow. By a combimtion of elementary conical flows due to
line sources, the flow about a slender arbitrsry cone can be described.
Four parameters sxe considered in determining such a system of sources:
the spacing of the sources around an axis lying in the flow direction,
the slope relative to the flow, the number of sources, smd their strength.
The first three parameters canle determined by several conditions.
First, the Esme symmetries will hold for the sources as for the bdy.
Second, the distance from a peak to a source till be less than or equal
to the radius of curvature at that point. Third, for an elongated body,
the slenderer the section, the closer together the sources must be.
F5md_ly, the greater the number of sources used, the more accurately
the desired body can be approxhted. The solution will be more labo-
rious, however, if more sourcee are used. The fourth parameter, source
strength,may be found by direct calculation.
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The case of a conical body at angle of attack and of yawed flight
can be solved by the same method.

Flight Propulsion Research Laboratory,
Wtional Advisory Committee for Aeronautics,

Cleveland, Ohio, April 27, 1948.
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Figure 1. - Geometric relatlons defining one arbitrary line

source and its relation to a point P in flow fteld.
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(a) Pro$eotion sketch of body surface and veloclt~ components.

-z?L
O,Q ‘=s5’=

(b) Seotion normal to x-axis taken through point Of.

FigwcI 2. - Geometrie relations between body surfme and velooity
maponents.
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— Desired .aeotfon
---- Calculated aeetion
—.— Pressure dist~ilxatfon

o Sourceposition

Figure S. - Comparison of desired elllptloal body with oaloulated bod~ and
reaultlng pressure dlstrlbutlon. p = 1.5; m = 0.125; K/U = 0.0220.
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F@tre 4.- Comparison of body at zero angle of attack
and zero yaw with same body at angle of attack and in
yawed flfght.
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Figure 5. - Surfaces obtained with sources of varying strength
at (a, * 4Jc/2). m = 0.20.
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K@ = 0.0046s — IMslrodbody
‘---Oaleulmted body

% := ‘-—Prosauro dlstrlbutioa
K@ = .00S8’7 o 60UW0pJmitlCm

Figure6. - Oomparlson of desired slender elliptical body with oaloulated body and resulting
p~SSH distribution. ~ = ~.6.
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— Deairad and oaloulated body
e- _ -g s~~e distribution

o Souroe position

I

Figure
boo

\

7. - Comparleon of deefred modlfled triangular bod~wlth oaloulated
andreaultlngpreamme diatrlbutlon.~ =1.5; m= 0.16;K1/U= 0.0102;
= 0.0154.


